4.5 Article

A genetics-based description of Symbiodinium minutum sp. nov. and S. psygmophilum sp. nov. (dinophyceae), two dinoflagellates symbiotic with cnidaria

期刊

JOURNAL OF PHYCOLOGY
卷 48, 期 6, 页码 1380-1391

出版社

WILEY
DOI: 10.1111/j.1529-8817.2012.01217.x

关键词

dinoflagellate; species recognition; Symbiodinium; symbiont; taxonomy; zooxanthellae

资金

  1. National Science Foundation [OCE-0928764]
  2. NSF
  3. Rising Star Program
  4. International Research Hub Project for Climate Change and Coral Reef/Island Dynamics at the University of the Ryukyus
  5. Division Of Ocean Sciences
  6. Directorate For Geosciences [0928764] Funding Source: National Science Foundation

向作者/读者索取更多资源

Traditional approaches for describing species of morphologically cryptic and often unculturable forms of endosymbiotic dinoflagellates are problematic. Two new species in the genus Symbiodinium Freudenthal 1962 are described using an integrative evolutionary genetics approach: Symbiodinium minutum sp. nov. are harbored by widespread tropical anemones in the genus Aiptasia; and Symbiodinium psygmophilum sp. nov. are harbored by subtropical and temperate stony corals (e.g., Astrangia, Cladocora, and Oculina) from the Atlantic Ocean and Mediterranean Sea. Both new species are readily distinguished from each other by phylogenetic disparity and reciprocal monophyly of several nucleic acid sequences including nuclear ribosomal internal transcribed spacers 1 and 2, single copy microsatellite flanker Sym15, mitochondrial cytochrome b, and the chloroplast 23S rRNA gene. Such molecular evidence, combined with well-defined differences in cell size, physiology (thermal tolerance), and ecology (host compatibility) establishes these organisms as distinct species. Future descriptions of Symbiodinium spp. will need to emphasize genetics-based descriptions because significant morphological overlap in this group obscures large differences in ecology and evolutionary divergence. By using molecular evidence based on conserved and rapidly evolving genes analyzed from a variety of samples, species boundaries are defined under the precepts of Evolutionary and Biological Species Concepts without reliance on an arbitrary genetic distance metric. Because ecological specialization arises through genetic adaptations, the Ecological Species Concept can also serve to delimit many host-specific Symbiodinium spp.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据