4.5 Article Proceedings Paper

Phylogenomics and secondary plastids: A look back and a look ahead

期刊

JOURNAL OF PHYCOLOGY
卷 44, 期 1, 页码 2-6

出版社

WILEY
DOI: 10.1111/j.1529-8817.2007.00432.x

关键词

alveolates; chromists; cryptophytes; haptophytes; heterokonts; phylogenomics

向作者/读者索取更多资源

Despite their importance to evolution, ecology, and cell biology, eukaryotes that acquired plastids through secondary endosymbiosis remain poorly studied from a genomic standpoint. Chromalveolata, a eukaryotic supergroup proposed to have descended from a heterotrophic eukaryote that acquired a red algal plastid by secondary endosymbiosis, includes four major lineages (alveolates, cryptophytes, haptophytes, and heterokonts). The chromalveolates exhibit remarkable diversity of cellular organization, and the available data suggest that they exhibit equal diversity in their genome organization. One of the most obvious differences in cellular organization is the retention of a highly reduced red algal nucleus in cryptophytes (also known as cryptomonads), but there are other major differences among chromalveolate lineages, including the loss of photosynthesis in multiple lineages. Although the hypothesis of chromalveolate monophyly is appealing, there is limited support for the hypothesis from nuclear genes, and questions have even been raised about the monophyly of chromalveolate plastids. Evidence for the chromalveolate hypothesis from large-scale nuclear data sets is reviewed, and alternative hypotheses are described. The potential for integrating information from chromalveolate genomics into functional genomics is described, emphasizing both the methodological challenges and the opportunities for future phylogenomic analyses of these groups.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据