4.5 Article

mRNA editing and spliced-leader RNA trans-splicing groups Oxyrrhis, noctiluca, Heterocapsa, and Amphidinium as basal lineages of dinoflagellates

期刊

JOURNAL OF PHYCOLOGY
卷 44, 期 3, 页码 703-711

出版社

WILEY
DOI: 10.1111/j.1529-8817.2008.00521.x

关键词

Amphidinium; basal dinoflagellates; cob; cox1; Heterocapsa; mitochondria; mRNA editing; Noctiluca; Oxyrrhis; SL trans-splicing

向作者/读者索取更多资源

Identification of novel dinoflagellate taxa through molecular analysis is hindered by lack of well-defined basal lineages. To address this issue, we attempted to reassess the phylogenetic status of Oxyrrhis marina Dujard. as well as other potentially basal taxa. The analysis was based on two newly established premises: (1) editing density of mitochondrial cob and cox1 mRNA increases from basal to later diverging lineages; (2) nuclear-encoded mRNA in dinoflagellates is trans-spliced to receive a 22 bp spliced leader (SL) at the 5'-end. We analyzed these two genetic traits in O. marina, Noctiluca scintillans (Macartney) Kof. et Swezy, Heterocapsa triquetra (Ehrenb.) F. Stein, H. rotundata (Lohmann) Ge. Hansen, Amphidinium carterae Hulburt, and A. operculatum Clap. et J. Lachm. Surprisingly, no editing was detected in cob and cox1 mRNAs in these lineages, except for a small number of editing events in Amphidinium. However, nuclear-encoded mRNAs in these species contained the SL sequence at the 5'-end, indicative of SL RNA trans-splicing. These findings, together with the recent cob-cox1-18S rRNA three-gene phylogeny, suggest the following: (1) O. marina is a basal dinoflagellate; (2) Heterocapsa, Amphidinium, and Noctiluca likely are also early diverging lineages of dinoflagellates, and the position of Heterocapsa is inconsistent with literature and needs further investigation; and (3) the presence of the 22 bp SL and mitochondrial (mt) mRNA editing can be considered a landmark of dinoflagellate splits.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据