4.0 Article

Modeling Chemoepitaxy of Block Copolymer Thin Films using Self-Consistent Field Theory

期刊

出版社

TECHNICAL ASSOC PHOTOPOLYMERS,JAPAN
DOI: 10.2494/photopolymer.26.817

关键词

Block copolymer; directed self assembly; chemoepitaxy; SCFT

向作者/读者索取更多资源

Directed self-assembly (DSA) of block copolymers (BCPs) is a promising technology for advanced patterning at future technology nodes. We use Self-Consistent Field Theory (SCFT) to model directed self-assembly (DSA) of PS-PM:MA block copolymers on chemically patterned surfaces (chemoepitaxy). We consider the scenario in which the surface is covered by a neutral brush, in which PS-preferential guiding lines are written. The lines have width W and the period of the line pattern is denoted as P. After the DSA process, one expects to see a lamellar pattern with period (P/n), where n is the line multiplication factor. Using SCFT, we investigate the stability of the templated lamellar pattern as a function of (P/L-0) and (W/L-0), where L-0 is the bulk lamellar period. We find that the pattern is most stable if the guiding stripe pattern has a width which is slightly larger than the equilibrium lamellar half-period, and roughly corresponds to (W/L-0) = 0.5-0.6, in agreement with earlier studies. The stability of the pattern also depends on the multiplication factor, n; as n is increased, the free energy differences between various morphologies diminish, making the formation of defects more likely. This has significant impact on the practicality of chemoepitaxy for sub-30 nm line and space applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据