4.7 Article

Size control of in vitro synthesized magnetite crystals by the MamC protein of Magnetococcus marinus strain MC-1

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 99, 期 12, 页码 5109-5121

出版社

SPRINGER
DOI: 10.1007/s00253-014-6326-y

关键词

Biomimetics; Biomineralization; MamC; Magnetite nanoparticles; Magnetosomes Magnetococcus marinus strain MC-1; Magnetotactic bacteria

资金

  1. Spanish Ministry of Culture (MEC) [CGL2010-18274, CGL2013-46612]
  2. Department of Energy Office of Science Early Career Research Award
  3. Ames Laboratory (US DOE, Iowa State University) [DE-AC02-07CH11358]
  4. US NSF Grant [EAR-1423939, SC-12-384]
  5. US DOE, Ames Laboratory at Iowa State University [C02-07CH11358]
  6. Directorate For Geosciences
  7. Division Of Earth Sciences [1423939] Funding Source: National Science Foundation

向作者/读者索取更多资源

Magnetotactic bacteria are a diverse group of prokaryotes that share the unique ability of biomineralizing magnetosomes, which are intracellular, membrane-bounded crystals of either magnetite (Fe3O4) or greigite (Fe3S4). Magnetosome biomineralization is mediated by a number of specific proteins, many of which are localized in the magnetosome membrane, and thus is under strict genetic control. Several studies have partially elucidated the effects of a number of these magnetosome-associated proteins in the control of the size of magnetosome magnetite crystals. However, the effect of MamC, one of the most abundant proteins in the magnetosome membrane, remains unclear. In this present study, magnetite nanoparticles were synthesized inorganically in free-drift experiments at 25 A degrees C in the presence of different concentrations of the iron-binding recombinant proteins MamC and MamCnts (MamC without its first transmembrane segment) from the marine, magnetotactic bacterium Magnetococcus marinus strain MC-1 and three commercial proteins [alpha-lactalbumin (alpha-Lac), myoglobin (Myo), and lysozyme (Lyz)]. While no effect was observed on the size of magnetite crystals formed in the presence of the commercial proteins, biomimetic synthesis in the presence of MamC and MamCnts at concentrations of 10-60 mu g/mL resulted in the production of larger and more well-developed magnetite crystals (similar to 30-40 nm) compared to those of the control (similar to 20-30 nm; magnetite crystals grown protein-free). Our results demonstrate that MamC plays an important role in the control of the size of magnetite crystals and could be utilized in biomimetic synthesis of magnetite nanocrystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据