4.6 Article

Photocatalytic decolorization of Rhodamine B dye using novel mesoporous SnO2-TiO2 nano mixed oxides prepared by sol-gel method

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jphotochem.2013.03.011

关键词

Mesoporous SnO2-TiO2 nanoparticle; Sol-gel; Photocatalysis; First order reaction; Rhodamine B decolorization

向作者/读者索取更多资源

The photocatalytic removal of Rhodamine B dye was successfully carried under UV irradiation over mesoporous SnO2/TiO2 nanoparticles embedded various molar compositions of SnO2 (0-25%) synthesized by sal-gel process using polymethylmethacrylate as template. Structural and textural features of the samples were investigated by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherm, Fourier transformer infra-red (FTIR) and transmission electron microscope (TEM). The existence of tin oxide is associated with remarkable reduction in particle size to 6 nm and increasing the surface area up to161 m(2)/g revealing the successful role of SnO2 in manipulating high surface area nanoparticles. The TEM results revealed that well-dispersed and uniform spherical nanoparticles with diameters of 6 nm were embedded in the sample matrix. Both adsorption and UV irradiation are contribute for decolorization of about 92% of Rhodamine dye over the sample embedded 10% SnO2 after 3 h of the reaction compared with 70% only decomposition over pure titania. The photocatalytic decolorization of the dye follows a pseudo-first-order kinetics and the apparent rate constant was increase with increasing the tin oxide content up to 10%. The existence of tin oxide is associated with remarkable reduction in particle size, increasing the oxidizing power and increasing the efficiency of charge carrier separation which considered the main reasons for a remarkable increasing in the catalytic activity of the samples. As the mode of preparation is economically feasible, we can consider this catalyst to be very effective to decolorize various organic dyes. (C) 2013 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据