4.5 Article

Direct Agonist Activity of Tricyclic Antidepressants at Distinct Opioid Receptor Subtypes

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.109.159939

关键词

-

资金

  1. Ministry of Education, University, and Research of Italy

向作者/读者索取更多资源

Tricyclic antidepressants (TCAs) have been reported to interact with the opioid system, but their pharmacological activity at opioid receptors has not yet been elucidated. In the present study, we investigated the actions of amoxapine, amitriptyline, nortriptyline, desipramine, and imipramine at distinct cloned and native opioid receptors. In Chinese hamster ovary (CHO) cells expressing delta-opioid receptors (CHO/DOR), TCAs displaced [3H]naltrindole binding and stimulated guanosine 5'-O-(3-[S-35]thio)triphosphate ([S-35]GTP gamma S) binding at micromolar concentrations with amoxapine displaying the highest potency and efficacy. Amoxapine and amitriptyline inhibited cyclic AMP formation and induced the phosphorylation of signaling molecules along the extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphatidylinositol-3 kinase pathways. Amoxapine also activated delta-opioid receptors in rat dorsal striatum and nucleus accumbens and human frontal cortex. In CHO cells expressing delta-opioid receptors (CHO/KOR), TCAs, but not amoxapine, exhibited higher receptor affinity and more potent stimulation of [S-35]GTP gamma S binding than in CHO/DOR and effectively inhibited cyclic AMP accumulation. Amitriptyline regulated ERK1/2 phosphorylation and activity in CHO/KOR and C6 glioma cells endogenously expressing kappa-opioid receptors, and this effect was attenuated by the kappa-opioid antagonist nor-binaltorphimine. In rat nucleus accumbens, amitriptyline slightly inhibited adenylyl cyclase activity and counteracted the inhibitory effect of the full kappa agonist trans-(-)-3,4dichloro-N-methyl-N-[2-(1-pyrrolidinyl)cyclohexyl]benzeneacetamide (U50,488). At the cloned mu-opioid receptor, TCAs showed low affinity and no significant agonist activity. These results show that TCAs differentially regulate opioid receptors with a preferential agonist activity on either delta or kappa subtypes and suggest that this property may contribute to their therapeutic and/or side effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据