4.5 Article

Rescue of Functional F508del Cystic Fibrosis Transmembrane Conductance Regulator by Vasoactive Intestinal Peptide in the Human Nasal Epithelial Cell Line JME/CF15

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.109.155341

关键词

-

资金

  1. Canadian Institutes of Health Research/Nova Scotia Health Research Foundation
  2. Dalhousie Medical Research Foundation
  3. Canadian Cystic Fibrosis Foundation
  4. Vaincre La Mucoviscidose
  5. Nova Scotia Economic Development Cooperative Employment Program
  6. Nova Scotia Health Research Foundation

向作者/读者索取更多资源

F508del is the most common cystic fibrosis-causing mutation that induces early degradation and poor trafficking of cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels to the apical membrane of epithelial cells. Our previous work in bronchial serous cells showed that vasoactive intestinal peptide (VIP) stimulation of the VPAC(1) receptor enhances CFTR-dependent chloride secretion by increasing its membrane insertion by a protein kinase C (PKC)-dependent pathway. In the present study, we investigated the effect of VIP on F508del-CFTR activity and membrane insertion in the human nasal epithelial cell line JME/CF15, which also expresses the VPAC(1) receptor. At reduced temperature (27 degrees C), which rescues F508del-CFTR trafficking, acute stimulation by VIP of rescued F508del-CFTR channels was protein kinase A (PKA)- and PKC-dependent. One hour of treatment with VIP strongly increased F508del-CFTR activity, with iodide efflux peaks three times higher than with untreated cells. At 37 degrees C, VIP-treated cells, but not untreated controls, showed significant iodide efflux peaks that were sensitive to the CFTR inhibitor 3-[(3-trifluoromethyl)phenyl]-5-[(4-carboxyphenyl)methylene]-2-thioxo-4-thiazolidinone (CFTRinh-172). Immunostaining, biotinylation assays, and Western blots confirmed a VIP-induced maturation and membrane insertion of F508del-CFTR at 37 degrees C. The corrector effect of VIP was abolished by the PKA inhibitor N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89), whereas G alpha(s) stimulation by cholera toxin significantly increased F508del-CFTR trafficking. On the other hand, membrane localization, but not maturation, of F508del-CFTR was significantly reduced by the PKC inhibitor bisindolylmaleimide X and the G(i/o) protein inhibitor pertussis toxin. VIP treatment had no effect on intracellular calcium or proteasome activity. These results indicate that, in human nasal cells, VIP rescues trafficking and membrane insertion of functional F508del-CFTR channels at physiological temperature by stimulating both PKA- and PKC-dependent pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据