4.5 Article

Serotonin 5-Hydroxytryptamine2A Receptor Activation Suppresses Tumor Necrosis Factor-α-Induced Inflammation with Extraordinary Potency

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.108.143461

关键词

-

资金

  1. Louisiana State University Health Sciences Center
  2. National Institutes of Health [HL072889, P20RR018766]

向作者/读者索取更多资源

The G protein-coupled serotonin 5-hydroxytryptamine (5-HT) 2A receptor is primarily recognized for its role in brain neurotransmission, where it mediates a wide variety of functions, including certain aspects of cognition. However, there is significant expression of this receptor in peripheral tissues, where its importance is largely unknown. We have now discovered that activation of 5-HT 2A receptors in primary aortic smooth muscle cells provides a previously unknown and extremely potent inhibition of tumor necrosis factor (TNF)-alpha-mediated inflammation. 5-HT 2A receptor stimulation with the agonist ( R)-1-(2,5dimethoxy-4-iodophenyl)-2-aminopropane [(R)-DOI] rapidly inhibits a variety of TNF-alpha-mediated proinflammatory markers, including intracellular adhesion molecule 1 (ICAM-1), vascular adhesion molecule 1 (VCAM-1), and interleukin (IL)-6 gene expression, nitric-oxide synthase activity, and nuclear translocation of nuclear factor kappa B, with IC50 values of only 10 to 20 pM. It is significant that proinflammatory markers can also be inhibited by (R)-DOI hours after treatment with TNF-alpha. With the exception of a few natural toxins, no current drugs or small molecule therapeutics demonstrate a comparable potency for any physiological effect. TNF-alpha-mediated inflammatory pathways have been strongly implicated in a number of diseases, including atherosclerosis, rheumatoid arthritis, psoriasis, type II diabetes, depression, schizophrenia, and Alzheimer's disease. Our results indicate that activation of 5-HT2A receptors represents a novel, and extraordinarily potent, potential therapeutic avenue for the treatment of disorders involving TNF-alpha-mediated inflammation. Note that because (R)-DOI can significantly inhibit the effects of TNF-alpha many hours after the administration of TNF-alpha, potential therapies could be aimed not only at preventing inflammation but also treating inflammatory injury that has already occurred or is ongoing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据