4.7 Review

Bacterial expansins and related proteins from the world of microbes

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 99, 期 9, 页码 3807-3823

出版社

SPRINGER
DOI: 10.1007/s00253-015-6534-0

关键词

Amorphogenesis; Biofuels; Cellulase synergism; Expansin; Plant-microbe interactions; Swollenin

资金

  1. United States Department of Energy from the Office of Basic Energy Sciences [DE-FG02-84ER13179]
  2. U.S. Department of Energy (DOE) [DE-FG02-84ER13179] Funding Source: U.S. Department of Energy (DOE)

向作者/读者索取更多资源

The discovery of microbial expansins emerged from studies of the mechanism of plant cell growth and the molecular basis of plant cell wall extensibility. Expansins are wall-loosening proteins that are universal in the plant kingdom and are also found in a small set of phylogenetically diverse bacteria, fungi, and other organisms, most of which colonize plant surfaces. They loosen plant cell walls without detectable lytic activity. Bacterial expansins have attracted considerable attention recently for their potential use in cellulosic biomass conversion for biofuel production, as a means to disaggregate cellulosic structures by nonlytic means (amorphogenesis). Evolutionary analysis indicates that microbial expansins originated by multiple horizontal gene transfers from plants. Crystallographic analysis of BsEXLX1, the expansin from Bacillus subtilis, shows that microbial expansins consist of two tightly packed domains: the N-terminal domain D1 has a double-psi beta-barrel fold similar to glycosyl hydrolase family-45 enzymes but lacks catalytic residues usually required for hydrolysis; the C-terminal domain D2 has a unique beta-sandwich fold with three co-linear aromatic residues that bind beta-1,4-glucans by hydrophobic interactions. Genetic deletion of expansin in Bacillus and Clavibacter cripples their ability to colonize plant tissues. We assess reports that expansin addition enhances cellulose breakdown by cellulase and compare expansins with distantly related proteins named swollenin, cerato-platanin, and loosenin. We end in a speculative vein about the biological roles of microbial expansins and their potential applications. Advances in this field will be aided by a deeper understanding of how these proteins modify cellulosic structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据