4.5 Article

Differential high-affinity interaction of dectin-1 with natural or synthetic glucans is dependent upon primary structure and is influenced by polymer chain length and side-chain branching

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.107.133124

关键词

-

向作者/读者索取更多资源

Glucans are structurally diverse fungal biopolymers that stimulate innate immunity and are fungal pathogen-associated molecular patterns. Dectin-1 is a C-type lectin-like pattern recognition receptor that binds glucans and induces innate immune responses to fungal pathogens. We examined the effect of glucan structure on recognition and binding by murine recombinant Dectin-1 with a library of natural product and synthetic (1-->3)-beta/(136)-beta-glucans as well as nonglucan polymers. Dectin1 is highly specific for glucans with a pure (1-->3)-beta-linked backbone structure. Although Dectin-1 is highly specific for (1-->3)-beta-D-glucans, it does not recognize all glucans equally. Dectin-1 differentially interacted with (1-->3)-beta-D-glucans over a very wide range of binding affinities (2.6 mM-2.2 pM). One of the most striking observations that emerged from this study was the remarkable high-affinity interaction of Dectin-1 with certain glucans (2.2 pM). These data also demonstrated that synthetic glucan ligands interact with Dectin-1 and that binding affinity increased in synthetic glucans containing a single glucose side-chain branch. We also observed differential recognition of glucans derived from saprophytes and pathogens. We found that glucan derived from a saprophytic yeast was recognized with higher affinity than glucan derived from the pathogen Candida albicans. Structural analysis demonstrated that glucan backbone chain length and (1-->6)-beta side-chain branching strongly influenced Dectin-1 binding affinity. These data demonstrate: 1) the specificity of Dectin-1 for glucans; 2) that Dectin-1 differentiates between glucan ligands based on structural determinants; and 3) that Dectin-1 can recognize and interact with both natural product and synthetic glucan ligands.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据