4.5 Article

Cannabinoid Agonists Stimulate [3H] GABA Release in the Globus Pallidus of the Rat When Gi Protein-Receptor Coupling Is Restricted: Role of Dopamine D2 Receptors

期刊

出版社

AMER SOC PHARMACOLOGY EXPERIMENTAL THERAPEUTICS
DOI: 10.1124/jpet.108.145425

关键词

-

资金

  1. CONACyT (Mexico) [50428-M]

向作者/读者索取更多资源

The motor effects of cannabinoids in the globus pallidus appear to be caused by increases in interstitial GABA. To elucidate the mechanism of this response, we investigated the effect of the selective cannabinoid type 1 receptor (CB1) cannabinoid agonist arachidonyl-2-chloroethylamide (ACEA) on [H-3] GABA release in slices of the rat globus pallidus. ACEA had two effects: concentrations between 10(-8) and 10(-6) M stimulated release, whereas higher concentrations (IC50 approximate to 10(-6) M) inhibited it. Another cannabinoid agonist, WIN-55,212-2, also had bimodal effects on release. Studies of cAMP production indicate that under conditions of low G(i/o), availability the coupling of CB1 receptors with G(i/o) proteins can be changed into CB1:G(s/olf) coupling; therefore, we determined the effects of conditions that limit G(i/o) availability on [H-3] GABA release. Blockers of G(i/o) protein interactions, pertussis toxin and N-ethylmaleimide, transformed the inhibitory effects of ACEA on GABA release into stimulation. It also has been suggested that stimulation of D2 receptors can reduce G(i/o) availability. Blocking D2 receptors with sulpiride [(S)-5-aminosulfonyl-N-[(1-ethyl-2-pyrrolidinyl)methyl]-2-methoxybenzamidersqb] or depleting dopamine with reserpine inhibited the ACEA-induced stimulation of release. Thus, the D2 dependence of stimulation is consistent with the proposal that D2 receptors reduce Gi/o proteins available for binding to the CB1 receptor. In summary, CB1 receptor activation has dual effects on GABA release in the globus pallidus. Low concentrations stimulate release through a process that depends on activation of dopamine D2 receptors that may limit G(i/o) protein availability. Higher concentrations of cannabinoid inhibit GABA release through mechanisms that are independent of D2 receptor activation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据