4.5 Article

Impact of Method of Preparation of Amorphous Solid Dispersions on Mechanical Properties: Comparison of Coprecipitation and Spray Drying

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 108, 期 2, 页码 870-879

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.xphs.2018.09.008

关键词

amorphous solid dispersion(s) (ASD); precipitation; mechanical properties; compaction; solid-state NMR (SSNMR) spectroscopy

向作者/读者索取更多资源

Usage of the amorphous phase of compounds has become the method of choice to overcome oral bioavailability problems related to poor solubility. Due to the unstable nature of glasses, it is clear that the method of preparation of the amorphous glass will have an impact on physical/chemical stability and in turn in vivo performance. The method of preparation can also have a profound impact on the mechanical properties of the amorphous phase. We have explored the impact of preparation method on the mechanical properties of an amorphous solid dispersion using a development compound, GDC-0810. Three methods were used to generate amorphous solid dispersions (ASDs) of 50% GDC-0810 with hydroxypropyl methylcellulose acetate succinate: (1) spray drying, (2) coprecipitation using overhead mixing, and (3) coprecipitation using resonant acoustic mixing. All 3 methods were found to generate ASDs with good phase mixing and similar glass transition temperatures. Coprecipitated ASD powders (overhead mixing and resonant acoustic mixing) demonstrated superior tabletability and flow properties when compared to the spray drying powder. Careful choice of manufacturing process can be used to tune material properties of ASDs to make them more amenable for downstream operations like tableting. Acoustic mixing has been demonstrated as a scalable new method to make ASDs through coprecipitation. (c) 2019 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据