4.5 Article

Mechanism of nanoparticle formation from ternary coground phenytoin and its derivatives

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 101, 期 9, 页码 3413-3424

出版社

WILEY-BLACKWELL
DOI: 10.1002/jps.23141

关键词

phenytoin; nanoparticle; grinding; interaction; physicochemical; solid state; NMR; AFM

向作者/读者索取更多资源

The mechanism of drug nanoparticle formation of phenytoin (DPH) and its derivatives monomethylphenytoin (MDPH) and dimethylphenytoin (DMDPH) was investigated. The drug, polyvinylpyrrolidone K17 (PVP), and sodium dodecyl sulfate were coground to obtain the ground mixture (GM). The DPH GM was amorphous; however, MDPH and DMDPH GMs contained drug crystals. Spectral changes in infrared and 13C solid-state nuclear magnetic resonance were observed in the DPH GM, partially observed in the MDPH GM, and hardly observed in the DMDPH GM. Mean particle sizes of the DPH, MDPH, and DMDPH GM nanosuspension were almost the same; however, stability after storage differed in the order of DPH > MDPH > DMDPH. The intermolecular interaction between the drug and PVP reflected not only the crystallinity of the drug in the GM but also the stability of the GM suspension. The size and stiffness of drug nanoparticles were evaluated using atomic force microscopy. Crystallization of the amorphous GM and agglomeration of the primary nanocrystals were observed in the DPH GM suspension. In contrast, primary nanocrystals were observed in the DMDPH GM suspension. The size of the drug nanocrystals formed from the different molecular states of the drug in the GM reflects the agglomerated states in water and stability. (c) 2012 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 101:34133424, 2012

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据