4.5 Article

Structural Stability of Vault Particles

期刊

JOURNAL OF PHARMACEUTICAL SCIENCES
卷 98, 期 4, 页码 1376-1386

出版社

ELSEVIER SCIENCE INC
DOI: 10.1002/jps.21508

关键词

circular dichroism; fluorescence spectroscopy; light scattering; empirical phase diagram; physical characterization; stability; drug delivery

向作者/读者索取更多资源

Vaults, at 13 MDa, are the largest ribonucleoprotein particles known. In vitro, expression of the major vault protein (MVP) alone in Sf9 insect cells results in the production of recombinant particles with characteristic vault structure. With the ultimate goal of using recombinant vaults as nanocapsules for the delivery of biomolecules, we have employed a variety of spectroscopic techniques (i.e., circular dichroism, fluorescence spectroscopy, and light scattering) along with electron microscopy, to characterize the structural stability of vaults over a wide range of pH (3-8) and temperature (10-90 degrees C). Ten different conformational states of the vaults were identified over the pH and temperature range studied with the most stable region at pH 6-8 below 40 degrees C and least stable at pH 4-6 above 60 degrees C. A unique intermediate molten globulelike state was also identified at pH 6 and similar to 55 degrees C. EM imaging showed the opening of intact vaults into flowerlike structures when transitioning from neutral to acidic pH. This information has potential use in the development of recombinant vaults into nanocapsules for drug delivery since one mechanism by which therapeutic agents entrapped in vaults could be released is through an opening of the intact vault structure. (C) 2008 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:1376-1386, 2009

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据