4.5 Article

The Petrology and Geochemistry of St. Helena Alkali Basalts: Evaluation of the Oceanic Crust-recycling Model for HIMU OIB

期刊

JOURNAL OF PETROLOGY
卷 52, 期 4, 页码 791-838

出版社

OXFORD UNIV PRESS
DOI: 10.1093/petrology/egr003

关键词

geochemistry; HIMU OIB; melting model; recycled oceanic crust; St. Helena

向作者/读者索取更多资源

We present major element, trace element, and petrographic data on alkali basalts from St. Helena, and examine the geochemical characteristics of a recycled component involved in the source of HIMU (Pb-206/Pb-204 > 20.5) ocean island basalts. Petrographic and compositional variations in the St. Helena basalts are best explained by the combined effect of fractional crystallization and accumulation of phenocrysts. Primary melt compositions are estimated by correcting for the effects of crystal-liquid differentiation by reconstructing the order of crystallization and the relative amount of fractionated phases. This calculation indicates that the St. Helena alkali basalts are derived from a common primary magma with 14-20 wt % MgO. Simple partial melting of fertile mantle peridotite, depleted mid-ocean ridge basalt (MORB)-source mantle, or garnet pyroxenite fails to produce the St. Helena primary melt. Instead, this primary melt can be reproduced if there are contributions from ancient recycled oceanic crust and depleted peridotite [(Rb/Nb)(PM) = 0.38-0.80]. Subducted sediment can be excluded to explain the low (Rb, Ba, U)/Nb and Ce/Pb of St. Helena basalts. Geochemical modeling using major and trace element abundances, together with Sr, Nd, Pb, and Hf isotope ratios, indicates that the St. Helena primary melt can be formed by 1-2% melting of a peridotitic source that was refertilized by a small amount (8-18%) of melt derived from recycled oceanic crust. This source has a similar trace element pattern to modern normal (N)-MORB, but element abundances are 0.1-0.2 times N-MORB values. The calculated recycled crust has a wide range of present-day Pb isotopic ratios (Pb-206/Pb-204 of 21.7-79.3 and Pb-208/Pb-204 of 40.8-89.3), Sr-87/Sr-86 of 0.7018-0.7028, Nd-143/Nd-144 of 0.51274-0.51285, and Hf-176/Hf-177 of 0.28262-0.28293 after a residence time of 1.2-2.8 Gyr. Rb, Ba, Pb, Sr, and light rare earth element abundances in the recycled crust are depleted compared with modern N-MORB, where-as Th, U, Sm, and Nd abundances fall within the range of compositional variations in modern N-MORB. The trace element compositions of the recycled oceanic crust can be explained by element behavior during seafloor alteration and subduction zone dehydration of oceanic crust. Therefore, recycling of ancient subducted oceanic crust is a potential process for producing the St. Helena HIMU basalts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据