4.5 Article

Stromal Cell-Derived Factor-1 Significantly Induces Proliferation, Migration, and Collagen Type I Expression in a Human Periodontal Ligament Stem Cell Subpopulation

期刊

JOURNAL OF PERIODONTOLOGY
卷 83, 期 3, 页码 379-388

出版社

WILEY
DOI: 10.1902/jop.2011.110201

关键词

Cell movement; chemokine CXCL12; CXCR4; periodontal ligament; receptors; stem cells

资金

  1. National Natural Science Foundation of China [81100756]
  2. Independent Innovation Foundation of Shandong University [2009TS047]
  3. Shandong Province Natural Science Foundation [ZR2009CM118]

向作者/读者索取更多资源

Background: The pivotal role of chemokine stromal cell derived factor-1 (SDF-1) in bone marrow mesenchymal stem cells recruitment and tissue regeneration has already been reported. However, its roles in human periodontal ligament stem cells (PDLSCs) remain unknown. PDLSCs are regarded as candidates for periodontal tissue regeneration and are used in stem cell based periodontal tissue engineering. The expression of chemokine receptors on PDLSCs and the migration of these cells induced by chemokines and their subsequent function in tissue repair may be a crucial procedure for periodontal tissue regeneration. Methods: PDL tissues were obtained from clinically healthy premolars extracted for orthodontic reasons and used to isolate single-cell colonies by the limited-dilution method. Immunocytochemical staining was used to detect the expression of the mesenchymal stem cell marker STRO-1. Differentiation potentials were assessed by alizarin-red staining and oil-red 0 staining. The expression of SDF-1 receptor CXCR4 was evaluated by real-time polymerase chain reaction (PCR) and immunocytochemical staining. 3-(4,5-dimethyl-thiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and bromodeoxyuridine incorporation assay were used to determine the viability and proliferation of the PDLSC subpopulation. Expression of collagen type I and alkaline phosphatase was detected by real-time PCR to determine the effect of SDF-1 on cells differentiation. Results: Twenty percent of PDL single-cell colonies expressed STRO-1 positively, and this specific subpopulation was positive for CXCR4 and formed minerals and lipid vacuoles after 4 weeks induction. SDF-1 significantly increased proliferation and stimulated the migration of this PDLSC subpopulation at concentrations between 100 and 400 ng/mL. CXCR4 neutralizing antibody could block cell proliferation and migration, suggesting that SDF-1 exerted its effects on cells through CXCR4. SDF-1 promoted collagen type I level significantly but had little effect on alkaline phosphatase level. Conclusion: SDF-1 may have the potential of promoting periodontal tissue regeneration by the mechanism of guiding PDLSCs to destructive periodontal tissue, promoting their activation and proliferation and influencing the differentiation of these stem cells. J Periodontol 2012;83:379-388.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据