4.5 Article

Interactions of Enamel Matrix Derivative and Biomechanical Loading in Periodontal Regenerative Healing

期刊

JOURNAL OF PERIODONTOLOGY
卷 82, 期 12, 页码 1725-1734

出版社

WILEY
DOI: 10.1902/jop.2011.100678

关键词

Biomechanics; dental occlusion; enamel matrix proteins; periodontal ligament

资金

  1. German Research Foundation, Bonn, Germany [208/TP4]
  2. Medical Faculty of the University of Bonn, Bonn, Germany

向作者/读者索取更多资源

Background: Although enamel matrix derivative (EMD) has been shown to promote periodontal regeneration, it is unknown whether the actions of EMD are modulated by occlusal loading. This in vitro study was performed to investigate whether biomechanical forces regulate the response of periodontal ligament (PDL) cells to EMD. Methods: Human PDL cells were treated with EMD in the presence and absence of cyclic tensile strain (CTS) of various magnitudes for <= 14 days. Synthesis of transforming growth factor (TGF)-beta 1, vascular endothelial growth factor (VEGF), growth factor receptors, collagen, and runt-related transcription factor 2- (RUNX2), cell numbers and adhesion, wound fill rate, and calcium accumulation were analyzed by real-time polymerase chain reaction, enzyme-linked immunosorbent assay, a wound healing assay, and alizarine red S staining. Results: Wound fill rate, cell numbers and adhesion, and expression of TGF-beta 1, VEGF, collagen, and RUNX2 were significantly increased by EMD. In the presence of CTS, the EMD-induced effects were significantly reduced. The inhibition of the EMD-upregulated VEGF expression by CTS was blocked by a specific inhibitor of nuclear factor-kappa B signaling. Moreover, CTS downregulated receptors for growth factors involved in the actions of EMD. CTS also antagonized significantly the EMD-induced calcium deposition. Conclusions: These in vitro findings suggest that the beneficial actions of EMD on PDL cell functions critical for periodontal regeneration are jeopardized by biomechanical loading. Clinical studies should clarify whether protection of teeth against occlusal forces in the early healing stage may positively affect the outcome of regenerative therapy with EMD. J Periodontol 2011;82:1725-1734.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据