4.6 Article

Binding energies of exciton complexes in transition metal dichalcogenide monolayers and effect of dielectric environment

期刊

PHYSICAL REVIEW B
卷 92, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.205418

关键词

-

资金

  1. Academy of Finland [126205, 263416]
  2. Centres of Excellence Programme [251748]
  3. Academy of Finland (AKA) [126205, 263416, 126205] Funding Source: Academy of Finland (AKA)

向作者/读者索取更多资源

Excitons, trions, biexcitons, and exciton-trion complexes in two-dimensional transition metal dichalcogenide sheets of MoS2, MoSe2, MoTe2, WS2, and WSe2 are studied by means of density functional theory and pathintegral Monte Carlo method in order to accurately account for the particle-particle correlations. In addition, the effect of dielectric environment on the properties of these exciton complexes is studied by modifying the effective interaction potential between particles. Calculated exciton and trion binding energies are consistent with previous experimental and computational studies, and larger systems such as biexciton and exciton-trion complex are found highly stable. Binding energies of biexcitons are similar to or higher than those of trions, but the binding energy of the trion depends significantly stronger on the dielectric environment than that of biexciton. Therefore, as a function of an increasing dielectric constant of the environment the exciton-trion complex dissociates to a biexciton rather than to an exciton and a trion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据