4.6 Article

Bright and dark singlet excitons via linear and two-photon spectroscopy in monolayer transition-metal dichalcogenides

期刊

PHYSICAL REVIEW B
卷 92, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.085413

关键词

-

资金

  1. Princeton Center for Theoretical Science (TCB)
  2. U.S. DOE Office of Science User Facility, at Brookhaven National Laboratory [DE-SC0012704]

向作者/读者索取更多资源

We discuss the linear and two-photon spectroscopic selection rules for spin-singlet excitons in monolayer transition-metal dichalcogenides. Our microscopic formalism combines a fully k-dependent few-orbital band structure with a many-body Bethe-Salpeter equation treatment of the electron-hole interaction, using a model dielectric function. We show analytically a nd numerically that the single-particle, valley-dependent selection rules are preserved in the presence of excitonic effects. Furthermore, we definitively demonstrate that the bright (one-photon allowed) excitons have s-type azimuthal symmetry and that dark p-type excitons can be probed via two-photon spectroscopy. The screened Coulomb interaction in these materials substantially deviates from the 1/epsilon(0)r form; this breaks the accidental angular momentum degeneracy in the exciton spectrum, such that the 2p exciton has a lower energy than the 2s exciton by at least 50 meV. We compare our calculated two-photon absorption spectra to recent experimental measurements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据