4.6 Article

Landau level quantization and almost flat modes in three-dimensional semimetals with nodal ring spectra

期刊

PHYSICAL REVIEW B
卷 92, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.045126

关键词

-

资金

  1. NSERC of Canada
  2. CIFAR
  3. Center for Quantum Materials at the University of Toronto
  4. National Research Foundation of Korea [PG041402] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

We investigate Landau level structures of semimetals with nodal ring dispersions. When the magnetic field is applied parallel to the plane in which the ring lies, there exist almost nondispersive Landau levels at the Fermi level (E-F = 0) as a function of the momentum along the field direction inside the ring. We show that the Landau levels at each momentum along the field direction can be described by the Hamiltonian for the graphene bilayer with fictitious interlayer couplings under a tilted magnetic field. Near the center of the ring where the interlayer coupling is negligible, we have Dirac Landau levels which explain the appearance of the zero modes. Although the interlayer hopping amplitudes become finite at higher momenta, the splitting of zero modes is exponentially small and they remain almost flat due to the finite artificial in-plane component of the magnetic field. The emergence of the density of states peak at the Fermi level would be a hallmark of the ring dispersion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据