4.2 Article

Investigation of peptide thioester formation via N→Se acyl transfer

期刊

JOURNAL OF PEPTIDE SCIENCE
卷 19, 期 2, 页码 65-73

出版社

WILEY-BLACKWELL
DOI: 10.1002/psc.2469

关键词

native chemical ligation; selenocysteine; acyl transfer; thioester

向作者/读者索取更多资源

Native chemical ligation is widely used for the convergent synthesis of proteins. The peptide thioesters required for this process can be challenging to produce, particularly when using Fmoc-based solid-phase peptide synthesis. We have previously reported a route to peptide thioesters, following Fmoc solid-phase peptide synthesis, via an N?S acyl shift that is initiated by the presence of a C-terminal cysteine residue, under mildly acidic conditions. Under typical reaction conditions, we occasionally observed significant thioester hydrolysis as a consequence of long reaction times (similar to 48?h) and sought to accelerate the reaction. Here, we present a faster route to peptide thioesters, by replacing the C-terminal cysteine residue with selenocysteine and initiating thioester formation via an N?Se acyl shift. This modification allows thioester formation to take place at lower temperatures and on shorter time scales. We also demonstrate how application of this strategy also accelerates peptide cyclization, when a linear precursor is furnished with an N-terminal cysteine and C-terminal selenocysteine. Copyright (c) 2013 European Peptide Society and John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据