4.2 Article

Ranking the affinity of aromatic residues for carbon nanotubes by using designed surfactant peptides

期刊

JOURNAL OF PEPTIDE SCIENCE
卷 14, 期 2, 页码 139-151

出版社

WILEY
DOI: 10.1002/psc.978

关键词

nanotechnology; protein design; carbon nanotube; dispersion; surfactant; Raman spectroscopy; sedimentation equilibrium ultracentrifugation; aromatic residue

向作者/读者索取更多资源

A series of surfactant peptides were created to evaluate the affinity of aromatic AAs for single-walled carbon nanotubes in the absence of complications from peptide folding or self-association. Each surfactant peptide has a lipidlike architecture, with two Lys residues at the C-terminus as a hydrophilic head, five Val residues to form a hydrophobic tail, and the testing AA at the N-terminus. Raman and CD spectroscopic studies reveal that the surfactant peptides have a large unordered structural component which is independent of peptide concentration, suggesting that the peptides undergo minimal association under experimental conditions, thus removing this interference from interpretation of the peptide/carbon nanotube interactions. A lack of peptide self-association is also indicated by sedimentation equilibrium ultracentrifugation results. Optical spectroscopy of the peptide/carbon nanotube dispersions indicate that among the three aromatic AAs, tryptophan has the highest affinity for carbon nanotubes (both bundled and individual states) when incorporated into a surfactant peptide, while the Tyr-containing peptide is more selective for individual carbon nanotubes. Phe has the lowest overall affinity for carbon nanotubes. Raman spectra of dispersions made with SPF, SPY and SPW display similar types of nanotubes dispersed, although differences in the relative nanotube populations are observed by optical spectroscopy. Copyright (C) 2007 European Peptide Society and John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据