4.6 Article

Calculating linear-response functions for finite temperatures on the basis of the alloy analogy model

期刊

PHYSICAL REVIEW B
卷 91, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.165132

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG) [EB154/20-1, EB154/21-1, EB154/23-1]
  2. priority program (Spin Caloric Transport) [SPP 1538]
  3. Spinphanomene in Reduzierten Dimensionen [SFB 689]

向作者/读者索取更多资源

A scheme is presented that is based on the alloy analogy model and allows one to account for thermal lattice vibrations as well as spin fluctuations when calculating response quantities in solids. Various models to deal with spin fluctuations are discussed concerning their impact on the resulting temperature-dependent magnetic moment, longitudinal conductivity, and Gilbert damping parameter. It is demonstrated that, by using the Monte Carlo (MC) spin configuration as input, the alloy analogy model is capable of reproducing the results of MC simulations on the average magnetic moment within all spin fluctuation models under discussion. On the other hand, the response quantities are much more sensitive to the spin fluctuation model. Separate calculations accounting for the thermal effect due to either lattice vibrations or spin fluctuations show that they give comparable contributions to the electrical conductivity and Gilbert damping. However, comparison to results accounting for both thermal effects demonstrates violation of Matthiessen's rule, showing the nonadditive effect of lattice vibrations and spin fluctuations. The results obtained for bcc Fe and fcc Ni are compared with the experimental data, showing rather good agreement for the temperature-dependent electrical conductivity and the Gilbert damping parameter.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据