4.6 Article

Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems

期刊

PHYSICAL REVIEW B
卷 91, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.085423

关键词

-

资金

  1. Scientific Computing Group, RRCAT
  2. MEXT KAKENHI [25400317]

向作者/读者索取更多资源

Recently, phosphorene, a monolayer honeycomb structure of black phosphorus, was experimentally manufactured and has attracted rapidly growing interest. Motivated by phosphorene, here we investigate the stability and electronic properties of the honeycomb structure of the arsenic system based on first-principles calculations. Two types of honeycomb structures, buckled and puckered, are found to be stable. We call them arsenenes, as in the case of phosphorene. We find that both buckled and puckered arsenenes possess indirect gaps. We show that the band gap of puckered and buckled arsenenes can be tuned by applying strain. The gap closing occurs at 6% strain for puckered arsenene, where the bond angles between the nearest neighbors become nearly equal. An indirect-to-direct gap transition occurs by applying strain. Specifically, 1% strain is enough to transform puckered arsenene into a direct-gap semiconductor. We note that a bulk form of arsenic called gray arsenic exists which can be used as a precursor for buckled arsenene. Our results will pave the way for applications to light-emitting diodes and solar cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据