4.6 Article

Neutral-current Hall effects in disordered graphene

期刊

PHYSICAL REVIEW B
卷 92, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.161411

关键词

-

资金

  1. NSF-MRSEC at the University of Maryland [DMR 0520471]
  2. Australian Research Council

向作者/读者索取更多资源

A nonlocal Hall bar geometry is used to detect neutral-current Hall effects in graphene on silicon dioxide. Disorder is tuned by the addition of Au or Ir adatoms in ultrahigh vacuum. A reproducible neutral-current Hall effect is found in both as-fabricated and adatom-decorated graphene. The Hall angle exhibits a complex but reproducible dependence on gate voltage and disorder, and notably breaks electron-hole symmetry. An exponential dependence on length between Hall and inverse Hall probes indicates a neutral-current relaxation length of approximately 300 nm. The short relaxation length and lack of precession in a parallel magnetic field suggest that the neutral currents are valley currents. No signature of the spin-orbit coupling induced spin Hall effect is observed in the Au- or Ir-decorated graphene. The near lack of temperature dependence from 7 to 300 K is unprecedented among reports of valley Hall effect in graphene, and promising for using controlled disorder for room temperature neutral-current electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据