4.6 Article

Phase stability and transformations in the halide perovskite CsSnI3

期刊

PHYSICAL REVIEW B
卷 91, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.144107

关键词

-

资金

  1. EPSRC [EP/K004956/1, EP/K016288/1, EP/L000202]
  2. ERC [277757]
  3. EPSRC [EP/K016288/1, EP/L000202/1, EP/K004956/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/K016288/1, EP/L000202/1, EP/K004956/1] Funding Source: researchfish

向作者/读者索取更多资源

We employ the quasiharmonic approximation to study the temperature-dependent lattice dynamics of the four different phases of cesium tin iodide (CsSnI3). Within this framework, we obtain the temperature dependence of a number of structural properties, including the cell volume, bulk modulus, and Gruneisen parameter. The Gibbs free energy of each phase is compared against the temperature-dependent Helmholtz energy obtained from the equilibrium structure within the harmonic approximation. We find that the black tetragonal perovskite phase is not dynamically stable up to at least 500 K, with the phonon dispersion displaying negative optic modes, which pass through all of the high-symmetry wave vectors in the Brillouin zone. The main contributions to the negative modes are found to be motions of the Cs atom inside the perovskite cage. The black cubic perovskite structure shows a zone-boundary instability, indicated by soft modes at the special q points M and R. These modes are present in calculations at the equilibrium (0 K) lattice constant, while at finite temperature additional negative modes develop at the zone center, indicating a ferroelectric instability. The yellow crystal, composed of one-dimensional (SnI6)(n) double chains, has the same heat of formation as the orthorhombic perovskite phase at 0 K, but becomes less energetically favorable at higher temperatures, due to its higher free energy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据