4.6 Article

Time-evolving a matrix product state with long-ranged interactions

期刊

PHYSICAL REVIEW B
卷 91, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.165112

关键词

-

资金

  1. NSF [DMR-1206515]
  2. Sherman Fairchild Foundation
  3. Nanostructured Thermoelectrics program of DOE BES
  4. Simons Foundation

向作者/读者索取更多资源

We introduce a numerical algorithm to simulate the time evolution of a matrix product state under a long-ranged Hamiltonian in moderately entangled systems. In the effectively one-dimensional representation of a system by matrix product states, long-ranged interactions are necessary to simulate not just many physical interactions but also higher-dimensional problems with short-ranged interactions. Since our method overcomes the restriction to short-ranged Hamiltonians of most existing methods, it proves particularly useful for studying the dynamics of both power-law interacting, one-dimensional systems, such as Coulombic and dipolar systems, and quasi-two-dimensional systems, such as strips or cylinders. First, we benchmark the method by verifying a long-standing theoretical prediction for the dynamical correlation functions of the Haldane-Shastry model. Second, we simulate the time evolution of an expanding cloud of particles in the two-dimensional Bose-Hubbard model, a subject of several recent experiments.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据