4.6 Article

Measuring the local quantum capacitance of graphene using a strongly coupled graphene nanoribbon

期刊

PHYSICAL REVIEW B
卷 91, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.115441

关键词

-

资金

  1. National Center of Competence in Research on Quantum Science and Technology (NCCR QSIT) - Swiss National Science Foundation

向作者/读者索取更多资源

We present electrical transport measurements of a van-der-Waals heterostructure consisting of a graphene nanoribbon separated by a thin boron nitride layer from a micron-sized graphene sheet. The interplay between the two layers is discussed in terms of screening or, alternatively, quantum capacitance. The ribbon can be tuned into the transport gap by applying gate voltages. Multiple sites of localized charge leading to Coulomb blockade are observed, in agreement with previous experiments. Due to the strong capacitive coupling between the ribbon and the graphene top layer sheet, the evolution of the Coulomb blockade peaks in gate voltages can be used to obtain the local density of states and therefore the quantum capacitance of the graphene top layer. Spatially varying density and doping are found, which are attributed to a spatial variation of the dielectric due to fabrication imperfections.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据