4.6 Article

Mechanisms for the symmetric and antisymmetric switching of a magnetic vortex core: Differences and common aspects

期刊

PHYSICAL REVIEW B
卷 91, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.014414

关键词

-

向作者/读者索取更多资源

Three-dimensional micromagnetic simulations of the switching of a magnetic vortex core in a cylindrical nanodisk are performed, for excitations with out-of-plane fields (symmetric switching) or with various types of time-dependent in-plane fields (asymmetric switching). Although the switching mechanisms are different in detail, all switching events must involve the movement of a Bloch point through the disk, because the switching leads to a change of the Skyrmion number which is a topological invariant as long as there is no action of a Bloch point. The momentary magnetization configurations are different in different layers of the disk. Because of the three-dimensionality it is often difficult to decide whether the asymmetric switching is caused by the splitting of the dip close to the vortex core into a vortex-antivortex pair, and the annihilation of the original vortex with the antivortex (whereby a Bloch point moves). It is suggested that there are situations for which such a switching occurs by the formation of a Bloch point in a configuration which is already similar to a vortex-antivortex configuration, but by a movement of this Bloch point before the formation of a complete pair and without the annihilation of the original vortex with an antivortex.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据