4.6 Article

Respective influence of in-plane and out-of-plane spin-transfer torques in magnetization switching of perpendicular magnetic tunnel junctions

期刊

PHYSICAL REVIEW B
卷 92, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.104430

关键词

-

资金

  1. Samsung Global MRAM Innovation Program
  2. EUROTALENTS Program

向作者/读者索取更多资源

The relative contributions of in-plane (damping-like) and out-of-plane (field-like) spin-transfer torques (STT) in the magnetization switching of out-of-plane magnetized magnetic tunnel junctions (pMTJ) has been theoretically analyzed using the transformed Landau-Lifshitz-Gilbert (LLG) equation with the STT terms. It is demonstrated that in a pMTJ structure obeying macrospin dynamics, the out-of-plane torque influences the precession frequency, but it does not contribute significantly to the STT switching process (in particular to the switching time and switching current density), which is mostly determined by the in-plane STT contribution. This conclusion is confirmed by finite temperature and finite writing pulse macrospin simulations of the current field switching diagrams. It contrasts with the case of STT switching in in-plane magnetized magnetic tunnel junction (MTJ) in which the field-like term also influences the switching critical current. This theoretical analysis was successfully applied to the interpretation of voltage field STT switching diagrams experimentally measured on pMTJ pillars 36 nm in diameter, which exhibit macrospin behavior. The physical nonequivalence of Landau and Gilbert dissipation terms in the presence of STT-induced dynamics is also discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据