4.5 Article

Environment-conscious scheduling of HPC applications on distributed Cloud-oriented data centers

期刊

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jpdc.2010.04.004

关键词

Cloud computing; High Performance Computing (HPC); Energy-efficient scheduling; Dynamic Voltage Scaling (DVS); Green IT

资金

  1. Australian Research Council (ARC)
  2. Australian Department of Innovation, Industry, Science and Research (DIISR)

向作者/读者索取更多资源

The use of High Performance Computing (HPC) in commercial and consumer IT applications is becoming popular. HPC users need the ability to gain rapid and scalable access to high-end computing capabilities. Cloud computing promises to deliver such a computing infrastructure using data centers so that HPC users can access applications and data from a Cloud anywhere in the world on demand and pay based on what they use. However, the growing demand drastically increases the energy consumption of data centers, which has become a critical issue. High energy consumption not only translates to high energy cost which will reduce the profit margin of Cloud providers, but also high carbon emissions which are not environmentally sustainable. Hence, there is an urgent need for energy-efficient solutions that can address the high increase in the energy consumption from the perspective of not only the Cloud provider, but also from the environment. To address this issue, we propose near-optimal scheduling policies that exploit heterogeneity across multiple data centers for a Cloud provider. We consider a number of energy efficiency factors (such as energy cost, carbon emission rate, workload, and CPU power efficiency) which change across different data centers depending on their location, architectural design, and management system. Our carbon/energy based scheduling policies are able to achieve on average up to 25% of energy savings in comparison to profit based scheduling policies leading to higher profit and less carbon emissions. (C) 2010 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据