4.6 Article

Resonant and nonlocal properties of phononic metasolids

期刊

PHYSICAL REVIEW B
卷 92, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.92.174110

关键词

-

资金

  1. Agence Nationale de la Recherche (ANR)
  2. Delegation Generale a l'Armement (DGA) under the project Metactif [ANR-11-ASTR-015]
  3. LabEx AMADEus in the framework of IdEx Bordeaux, France [ANR-10-LABX-42, ANR-10-IDEX-03-02]

向作者/读者索取更多资源

We derive a general theory of effective properties in metasolids based on phononic crystals with low frequency resonances. We demonstrate that in general these structures need to be described by means of a frequency-dependent and nonlocal anisotropic mass density, stiffness tensor and a third-rank coupling tensor, which shows that they behave like a nonlocal Willis medium. The effect of nonlocality and coupling tensor manifest themselves for some particular resonances, whereas they become negligible for other resonances. Considering the example of a two-dimensional phononic crystal, consisting of triangular arrangements of cylindrical shells in an elastic matrix, we show that its mass density tensor is strongly resonant and anisotropic presenting both positive and negative divergent values, while becoming scalar in the quasistatic limit. Moreover, it is found that the negative value of transverse component of the mass density is induced by a dipolar resonance, while that of the vertical component is induced by a monopolar one. Finally, the dispersion relation obtained by the effective parameters of the crystal is compared with the band structure, showing good agreement for the low-wave-number region, although the nonlocal effects are important given the existence of some resonant values of the wave number.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据