4.6 Article

Ultrafast dynamic conductivity and scattering rate saturation of photoexcited charge carriers in silicon investigated with a midinfrared continuum probe

期刊

PHYSICAL REVIEW B
卷 91, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.91.075201

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft (DFG)

向作者/读者索取更多资源

We employ ultrabroadband terahertz-midinfrared probe pulses to characterize the optical response of photoinduced charge-carrier plasmas in high-resistivity silicon in a reflection geometry, over a wide range of excitation densities (10(15)-10(19) cm(-3)) at room temperature. In contrast to conventional terahertz spectroscopy studies, this enables one to directly cover the frequency range encompassing the resultant plasma frequencies. The intensity reflection spectra of the thermalized plasma, measured using sum-frequency (up-conversion) detection of the probe pulses, can be modeled well by a standard Drude model with a density-dependent momentum scattering time of similar to 200 fs at low densities, reaching similar to 20 fs for densities of similar to 10(19) cm(-3), where the increase of the scattering rate saturates. This behavior can be reproduced well with theoretical results based on the generalized Drude approach for the electron-hole scattering rate, where the saturation occurs due to phase-space restrictions as the plasma becomes degenerate. We also study the initial subpicosecond temporal development of the Drude response and discuss the observed rise in the scattering time in terms of initial charge-carrier relaxation, as well as the optical response of the photoexcited sample as predicted by finite-difference time-domain simulations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据