4.7 Article

Substrate sources regulate spatial variation of metabolically active methanogens from two contrasting freshwater wetlands

期刊

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY
卷 99, 期 24, 页码 10779-10791

出版社

SPRINGER
DOI: 10.1007/s00253-015-6912-7

关键词

Calamagrostis angustifolia; Carex lasiocarpa; Methanogenic process; Substrate source; Active methanogen

资金

  1. Strategic Priority Research Program-Climate Change: Carbon Budget and Relevant Issues of the Chinese Academy of Sciences [XDA05020501]
  2. National Basic Research Program of China [2012CB417102]
  3. Natural Science Foundation of China [41171190]

向作者/读者索取更多资源

There is ample evidence that methane (CH4) emissions from natural wetlands exhibit large spatial variations at a field scale. However, little is known about the metabolically active methanogens mediating these differences. We explored the spatial patterns in active methanogens of summer inundated Calamagrostis angustifolia marsh with low CH4 emissions and permanently inundated Carex lasiocarpa marsh with high CH4 emissions in Sanjiang Plain, China. In C. angustifolia marsh, the addition of C-13-acetate significantly increased the CH4 production rate, and Methanosarcinaceae methanogens were found to participate in the consumption of acetate. In C. lasiocarpa marsh, there was no apparent increase in the CH4 production rate and no methanogen species were labeled with C-13. When (CO2)-C-13-H-2 was added, however, CH4 production was found to be due to Fen Cluster (Methanomicrobiales) in C. angustifolia marsh and Methanobacterium Cluster B (Methanobacteriaceae) together with Fen Cluster in C. lasiocarpa marsh. These results suggested that CH4 was produced primarily by hydrogenotrophic methanogens using substrates mainly derived from plant litter in C. lasiocarpa marsh and by both hydrogenotrophic and acetoclastic methanogens using substrates mainly derived from root exudate in C. angustifolia marsh. The significantly lower CH4 emissions measured in situ in C. angustifolia marsh was primarily due to a deficiency of substrates compared to C. lasiocarpa marsh. Therefore, we speculate that the substrate source regulates both the type of active methanogens and the CH4 production pathway and consequently contributes to the spatial variations in CH4 productions observed in these freshwater marshes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据