4.3 Article

Locked Plating of Distal Femur Fractures Leads to Inconsistent and Asymmetric Callus Formation

期刊

JOURNAL OF ORTHOPAEDIC TRAUMA
卷 24, 期 3, 页码 156-162

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/BOT.0b013e3181be6720

关键词

locked plating; femur; fracture; callus; secondary bone healing; periarticular plating

资金

  1. National Institutes of Health/National Institute of Arthritis and Musculoskeletal and Skin Diseases [R21 AR05361]

向作者/读者索取更多资源

Objectives: Locked plating constructs may be too stiff to reliably promote secondary bone healing. This study used a novel imaging technique to quantify periosteal callus formation of distal femur fractures stabilized with locking plates. It investigated the effects of cortex-to-plate distance, bridging span, and implant material on periosteal callus formation. Design: Retrospective cohort study. Setting: One Level I and one Level II trauma center. Patients: Sixty-four consecutive patients with distal femur fractures (AO types 32A, 33A-C) stabilized with periarticular locking plates. Intervention: Osteosynthesis using indirect reduction and bridge plating with periarticular locking plates. Main Outcome Measurement: Periosteal callus size on lateral and anteroposterior radiographs. Results: Callus size varied from 0 to 650 mm(2). Deficient callus (20 mm(2) or less) formed in 52%, 47%, and 37% of fractures at 6, 12, and 24 weeks postsurgery, respectively. Callus formation was asymmetric, whereby the medial cortex had on average 64% more callus (P = 0.001) than the anterior or posterior cortices. A longer bridge span correlated minimally with an increased callus size at Week 6 (P = 0.02), but no correlation was found at Weeks 12 and 24 postsurgery. Compared with stainless steel plates, titanium plates had 76%, 71%, and 56% more callus at Week 6 (P = 0.04), Week 12 (P = 0.03), and Week 24 (P = 0.09), respectively. Conclusions: Stabilization of distal femur fractures with periarticular locking plates can cause inconsistent and asymmetric formation of periosteal callus. A larger bridge span only minimally improves callus formation. The more flexible titanium plates enhanced callus formation compared with stainless steel plates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据