4.5 Article

Blockade of JNK and NFAT pathways attenuates orthopedic particle-stimulated osteoclastogenesis of human osteoclast precursors and murine calvarial osteolysis

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 31, 期 1, 页码 67-72

出版社

WILEY-BLACKWELL
DOI: 10.1002/jor.22200

关键词

osteoclast; osteolysis; NFAT; PMMA

资金

  1. MEXT KAKENHI [21791384]
  2. NIH/NIAMS [AR-49192, AR-54326]
  3. Shriners Hospital for Children
  4. Grants-in-Aid for Scientific Research [21791384] Funding Source: KAKEN

向作者/读者索取更多资源

Particles released from orthopedic implants attract immune host defense cells to the bone-implant interface and contribute to development of inflammation. The inflammatory microenvironment supports recruitment and differentiation of osteoclasts, the primary culprit of osteolysis. Therefore, understanding the complex signals that contribute to osteoclastogenesis and osteolysis is a sensible approach to design strategies to inhibit bone loss. The signaling cascades that coordinate osteoclastogenesis have been widely investigated. These include MAP kinases, Akt/PI3K pathway, NF-kappa B signal transduction pathway, and NFAT pathway. We have recently reported that polymethylmethacrylate (PMMA) particles activate the NFAT pathway in murine osteoclast precursors and that NFAT inhibitors dose-dependently block PMMA-induced osteoclastogenesis. In the current study, we examined the role of JNK and NFATc1 in mice in response to PMMA particles using murine calvaria model. We show that locally administered MAPK/JNK inhibitor SP600125 and calcineurin/NFAT inhibitor cyclosporine-A effectively blocked PMMA-induced osteolysis in murine calvaria. To buttress the clinical relevance of JNK/NFATc1-based regulation of PMMA-induced osteoclastogenesis, we evaluated the effect of PMMA using human macrophages. We demonstrate that SP600125 and cyclosporine-A abolished particle-induced osteoclastogenesis in human osteoclast progenitors retrieved from patients undergoing total hip replacement. Thus JNK and NFATc1 appear to act as significant mediators of orthopedic particle-induced osteolysis in humans. (c) 2012 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 31:67-72, 2012

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据