4.5 Article

In vivo cartilage contact deformation of human ankle joints under full body weight

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 26, 期 8, 页码 1081-1089

出版社

WILEY
DOI: 10.1002/jor.20593

关键词

cartilage; in vivo cartilage deformation; ankle joint; fluoroscopic image; in vivo biomechanies

向作者/读者索取更多资源

Quantitative data on in vivo deformation of articular cartilage is important for understanding the articular joint function and the etiology of degenerative joint diseases such as osteoarthritis. This study experimentally determined the in vivo cartilage thickness distribution and articular cartilage contact strain distribution in human ankle joints under full body weight loading conditions using a combined dual fluoroscopic and magnetic resonance imaging technique. The average cartilage thickness with the joint non-weight bearing was found to be 1.43 mm +/- 0.15 mm and 1.42 mm +/- 0.18 mm in the distal tibial and proximal talar cartilage layers, respectively. During weight bearing on a single leg, the strain distribution data revealed that 42.4% +/- 15.7% of the contact area had contact strain higher than 15% in the ankle joint. Peak cartilage contact strain reached 34.5% +/- 7.3%. This quantitative data on in vivo human cartilage morphology and deformation demonstrated that the cartilage may undergo large deformations under the loading conditions experienced in human ankle joints during daily activities. The in vivo cartilage contact deformation can be used as displacement boundary conditions in three-dimensional (3D) finite element models of the joint to calculate in vivo 3D articular cartilage contact stress/strain distributions. (c) 2008 Orthopaedic Research Society.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据