4.5 Article

In vivo bioluminescence imaging study to monitor ectopic bone formation by luciferase gene marked mesenchymal stem cells

期刊

JOURNAL OF ORTHOPAEDIC RESEARCH
卷 26, 期 7, 页码 901-909

出版社

WILEY-BLACKWELL
DOI: 10.1002/jor.20582

关键词

tissue engineering; luciferase; stem cell research; osteogenesis; bioluminescence imaging

向作者/读者索取更多资源

Mesenchymal stem cells (MSCs) represent a powerful tool for applications in regenerative medicine. In this study, we used in vivo bioluminescence imaging to noninvasively investigate the fate and the contribution to bone formation of adult MSCs in tissue engineered constructs. Goat MSCs expressing GFP-luciferase were seeded on ceramic scaffolds and implanted subcutaneously in immune-deficient mice. The constructs were monitored weekly with bioluminescence imaging and were retrieved after 7 weeks to quantify bone formation by histomorphometry. With increasing amounts of seeded MSCs (from 0 to 1 x 10(6) MSC/scaffold), a cell-dose related increase in bioluminescence was observed at all time points, correlating with increased bone formation at 7 weeks. To investigate the relevance of MSC proliferation to bone deposition, cell-seeded scaffolds were irradiated. The irradiated cells were functional with respect to oxygen consumption but no increase in bioluminescence was observed in vivo, and only minimal bone was produced. Proliferating MSCs are likely required for initiation of bone formation in tissue engineered constructs in vivo. Bioluminescence is a useful tool to monitor cellular responses and predict bone formation in vivo. (C) 2008 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据