4.6 Article

Chemical basis of Trotter-Suzuki errors in quantum chemistry simulation

期刊

PHYSICAL REVIEW A
卷 91, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.91.022311

关键词

-

资金

  1. Department of Energy Computational Science Graduate Fellowship [DE-FG02-97ER25308]
  2. Air Force Office of Scientific Research [FA9550-12-1-0046]
  3. National Science Foundation Award [CHE-1152291]

向作者/读者索取更多资源

Although the simulation of quantum chemistry is one of the most anticipated applications of quantum computing, the scaling of known upper bounds on the complexity of these algorithms is daunting. Prior work has bounded errors due to discretization of the time evolution (known as Trotterization) in terms of the norm of the error operator and analyzed scaling with respect to the number of spin orbitals. However, we find that these error bounds can be loose by up to 16 orders of magnitude for some molecules. Furthermore, numerical results for small systems fail to reveal any clear correlation between ground-state error and number of spin orbitals. We instead argue that chemical properties, such as the maximum nuclear charge in a molecule and the filling fraction of orbitals, can be decisive for determining the cost of a quantum simulation. Our analysis motivates several strategies to use classical processing to further reduce the required Trotter step size and estimate the necessary number of steps, without requiring additional quantum resources. Finally, we demonstrate improved methods for state preparation techniques which are asymptotically superior to proposals in the simulation literature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据