4.6 Article

Extended convexity of quantum Fisher information in quantum metrology

期刊

PHYSICAL REVIEW A
卷 91, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.91.042104

关键词

-

向作者/读者索取更多资源

We prove an extended convexity for quantum Fisher information of a mixed state with a given convex decomposition. This convexity introduces a bound which has two parts: (i) The classical part associated with the Fisher information of the probability distribution of the states contributing to the decomposition, and (ii) the quantum part given by the average quantum Fisher information of the states in this decomposition. Next we use a non-Hermitian extension of a symmetric logarithmic derivative in order to obtain another upper bound on quantum Fisher information, which helps to derive a closed form for the bound in evolutions having the semigroup property. We enhance the extended convexity with this concept of a non-Hermitian symmetric logarithmic derivative (which we show is computable) to lay out a general metrology framework where the dynamics is described by a quantum channel and derive the ultimate precision limit for open-system quantum metrology. We illustrate our results and their applications through two examples where we also demonstrate how the extended convexity allows identifying a crossover between quantum and classical behaviors for metrology.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据