4.6 Article

Optomechanically induced transparency associated with steady-state entanglement

期刊

PHYSICAL REVIEW A
卷 91, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.91.013827

关键词

-

资金

  1. National Natural Science Foundation of China [11404039]

向作者/读者索取更多资源

We theoretically investigate a two-cavity optomechanical system in which a cavity (cavity a) couples to a mechanical resonator via radiation pressure and to another cavity (cavity c) via a common waveguide. In the excitation of a strong pump filed to cavity a, the steady-state entanglement between cavity a and c, as a quantum channel, can be generated, which provides an indirect optical pathway to excite cavity c by means of the pump filed. Quantum interference between the direct and indirect optical pathways gives rise to an optomechanically induced transparency appearing in the probe transmission of cavity c. Unlike in a typical optomechanically induced transparency effect, the electromagnetical control of the transmission is implemented by resorting to the quantum channel. Furthermore, the coupling strength of the two cavities is an important factor of the quantum channel, which can influence the width of the transparency window and the bistable behavior of the mean photon number in cavity a. We also illustrate that the electromagnetical control via quantum channel can be exploited to implement the optical switch and the slow light.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据