4.7 Article

Mechanistic studies on the Cu-catalyzed three-component reactions of sulfonyl azides, 1-alkynes and amines, alcohols, or water: Dichotomy via a common pathway

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 73, 期 14, 页码 5520-5528

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jo800733p

关键词

-

资金

  1. National Research Foundation of Korea [과06A1506] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Combined analyses of experimental and computational studies on the Cu-catalyzed three-component reactions of sulfonyl azides, terminal alkynes and amines, alcohols, or water are described. A range of experimental data including product distribution ratio and trapping of key intermediates support the validity of a common pathway in the reaction of 1-alkynes and two distinct types of azides substituted with sulfonyl and aryl(alkyl) groups. The proposal that bimolecular cycloaddition reactions take place initially between triple bonds and sulfonyl azides to give N-sulfonyl triazolyl copper intermediates was verified by a trapping experiment. The main reason for the different outcome from reactions between sulfonyl and aryl(alkyl) azides is attributed to the lability of the N-sulfonyl triazolyl copper intermediates. These species are readily rearranged to another key intermediate, ketenimine, into which various nucleophiles such as amines, alcohols, or water add to afford the three-component coupled products: amidines, imidates, or amides, respectively. In addition, the proposed mechanistic framework is in good agreement with the obtained kinetics and competition studies. A computational study (B3LYP/LACV3P*+) was also performed confirming the proposed mechanistic pathway that the triazolyl copper intermediate plays as a branching point to dictate the product distribution.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据