4.7 Article

Synthesis, optical properties, and LFER analysis of solvent-dependent binding constants of Hamilton-receptor-connected merocyanine chromophores

期刊

JOURNAL OF ORGANIC CHEMISTRY
卷 73, 期 16, 页码 6355-6362

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jo801083b

关键词

-

向作者/读者索取更多资源

[GRAPHICS] A merocyanine dye equipped with a Hamilton-receptor unit has been synthesized that enables strong noncovalent binding of other merocyanine dyes bearing barbituric acid acceptor groups by six hydrogen bonds. NMR and UV/vis titration experiments in toluene, chloroform, dichloromethane, dioxane, and THF provide evidence for the formation of 1:1 complexes even in the dipolar solvents. An enhanced binding strength is observed for the more dipolar merocyanine dyes in the head-to-tail assembly structure with binding constants up to > 10(8) M-1 in toluene. In the present bimolecular complexes two merocyanine chromophores are assembled in a head-to-tail fashion that affords increased dipole moments as demanded for efficient electric field induced poling processes in nonlinear optical and photorefractive polymeric hosts. The solvent dependency of the binding constants for various barbituric acid dye-Hamilton receptor complexes as well as a perylene imide-melamine complex reveals linear free energy relationships (LFER) that allow for an estimation of binding constants larger than 10(12) M-1 for Hamilton receptor organized head-to-tail merocyanine bimolecular complexes in aliphatic solvents. It is suggested that such LFER are valuable tools for the estimation of binding constants in solvents where experimental binding constants cannot be determined because of solubility or spectroscopic problems.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据