4.6 Article

Negative-quench-induced excitation dynamics for ultracold bosons in one-dimensional lattices

期刊

PHYSICAL REVIEW A
卷 91, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.91.033611

关键词

-

资金

  1. Hamburgisches Gesetz zur Forderung des wissenschaftlichen und kunstlerischen Nachwuchses (HmbNFG)
  2. Deutsche Forschungsgemeinschaft (DFG) of Light Induced Dynamics and Control of Correlated Quantum Systems [SFB 925]

向作者/读者索取更多资源

The nonequilibrium dynamics following a quench of strongly repulsive bosonic ensembles in one-dimensional finite lattices is investigated by employing interaction quenches and/or a ramp of the lattice potential. Both sudden and time-dependent quenches are analyzed in detail. For the case of interaction quenches we address the transition from the strong repulsive to the weakly interacting regime, suppressing in this manner the heating of the system. The excitation modes such as the cradle process and the local breathing mode are examined via local density observables. In particular, the cradle mode is inherently related to the initial delocalization and, following a negative interaction quench, can be excited only for incommensurate setups with filling larger than unity. Alternatively, a negative quench of the lattice depth which favors the spatial delocalization is used to access the cradle mode for setups with filling smaller than unity. Our results shed light on possible schemes to control the cradle and the breathing modes. Finally, employing the notion of fidelity we study the dynamical response of the system after a diabatic or adiabatic parameter modulation for short and long evolution times. The evolution of the system is obtained numerically using the ab initio multilayer multiconfiguration time-dependent Hartree method for bosons, which permits us to follow nonequilibrium dynamics including the corresponding investigation of higher-band effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据