4.3 Article

The anti-tumor activities of cerebrosides derived from sea cucumber Acaudina molpadioides and starfish Asterias amurensis in vitro and in vivo

期刊

JOURNAL OF OLEO SCIENCE
卷 61, 期 6, 页码 321-330

出版社

JAPAN OIL CHEMISTS SOC
DOI: 10.5650/jos.61.321

关键词

Acaudina molpadioides; Asterias amurensis; cerebrosides; anti-tumor; S180 cells; mitochondria-mediated apoptosis pathway

资金

  1. National Natural Science Foundation of China [30972285]
  2. International Science & Technology Cooperation Program of China [2010DFA31330]
  3. National Marine Public Welfare Scientific Research Project of China [201105029]

向作者/读者索取更多资源

The present study was undertaken to examine the effect of cerebrosides derived from the sea cucumber Acaudina molpadioides and the starfish Asterias amurensis on the anti-tumor activity in vitro and in vivo. The results indicated that both Acaudina molpadioides cerebrosides (AMC) and Asterias amurensis cerebrosides (AAC) exhibited an inhibitory effect on cell proliferation through induction of apoptosis in S180 cells. Moreover, administration of AMC and AAC (50 mg/kg BW) on S180 tumor bearing mice reduced the tumor weight by 45.24 % and 35.71 %, respectively. In S180 ascites tumor model, AMC and AAC (50 mg/kg BW) treatment exhibited a significant ascites fluid growth inhibition of 31.23 %, and 22.72 %. Furthermore, the ascites tumor cell viability ratio in AMC and AAC groups reduced to 50.89 % and 51.69 %, respectively. The life span of AMC and AAC administrated groups increased by 55.28 % and 35.77 % compared to control. Quantitative real-time PCR analysis demonstrated that the administration of AMC and AAC down-regulated the expression of Bcl-2, Bcl-xL, while on the other hand, up-regulated Bax, Cytochrome c, caspase-9 and caspase-3 mRNA level of the S180 ascites tumor cells. It was concluded that AMC and AAC should have potential anti-tumor activity both in vitro and in vivo by inducing apoptosis through the mitochondria-mediated apoptosis pathway. AAC seemed to be more effective than AMC in vitro but less potent in vivo. It may depend on the structural differences in their fatty acid groups and sphingoid bases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据