4.6 Article

Thermal relaxation of lithium dendrites

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 12, 页码 8000-8005

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cp05786d

关键词

-

资金

  1. Bill and Melinda Gates Foundation [OPP1069500]
  2. Bosch Energy Research Network Grant [13.01.CC11]
  3. Bill and Melinda Gates Foundation [OPP1069500] Funding Source: Bill and Melinda Gates Foundation

向作者/读者索取更多资源

The average lengths (lambda) over bar of lithium dendrites produced by charging symmetric Li-0 batteries at various temperatures are matched by Monte Carlo computations dealing both with Li+ transport in the electrolyte and thermal relaxation of Li-0 electrodeposits. We found that experimental (lambda) over bar (T) variations cannot be solely accounted by the temperature dependence of Li+ mobility in the solvent but require the involvement of competitive Li-atom transport from metastable dendrite tips to smoother domains over Delta E-R(double dagger) similar to 20 kJ mol(-1) barriers. A transition state theory analysis of Li-atom diffusion in solids yields a negative entropy of activation for the relaxation process: Delta S-R(double dagger) approximate to -46 J mol(-1) K-1 that is consistent with the transformation of amorphous into crystalline Li-0 electrodeposits. Significantly, our Delta E-R(double dagger) similar to 20 kJ mol(-1) value compares favorably with the activation barriers recently derived from DFT calculations for self-diffusion on Li-0(001) and (111) crystal surfaces. Our findings suggest a key role for the mobility of interfacial Li-atoms in determining the morphology of dendrites at temperatures above the onset of surface reconstruction: T-SR approximate to 0.65 T-MB (T-MB = 453 K: the melting point of bulk Li-0).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据