4.3 Article

Roles of vertical turbulent mixing in the ocean response to Typhoon Rex (1998)

期刊

JOURNAL OF OCEANOGRAPHY
卷 65, 期 3, 页码 373-396

出版社

SPRINGER
DOI: 10.1007/s10872-009-0034-8

关键词

Typhoon; sea surface cooling; vertical turbulent mixing; Ekman pumping; ocean model

资金

  1. Meteorological Research Institute (MRI)/Japan Meteorological Agency (JMA)
  2. Ocean Research Institute, University of Tokyo [126 in FY2006, 107 in FY2007, 123 in FY2008]

向作者/读者索取更多资源

How the role of vertical turbulent mixing (VTM) in sea surface cooling (SSC) varies with the moving speed of a tropical cyclone was examined for Typhoon Rex (1998) by using the Meteorological Research Institute Community Ocean Model (MRI.COM). The MRI.COM well reproduced TRMM/TMI three-day mean sea surface temperature (SST) fields along Rex's track. During the fast-moving phase of Rex, SSC simulated by the MRI.COM was caused by shear-induced VTM on the right side of the track. During the slowly-moving phase, on the other hand, the Ekman-pumping area mostly overlapped the VTM area right behind Rex's center. During the recurvature phase, cool water transported by the upwelling was more efficiently entrained into a mixed layer by the VTM for nearly a 1 near-inertial period after the passage of Rex. We then modified the entrainment formulation of Deardorff (1983), which was incorporated into a slab mixed-layer ocean model (SOM) so as to fit to the results simulated by the MRI.COM. The principal modifications are as follows: (1) consideration of turbulent kinetic energy (TKE) production caused by surface wave breaking; (2) increase in the coefficient for estimating dissipation to balance with TKE production due to turbulent transport; and (3) changing the initial guess for the critical Richardson number. These modifications led to an improvement of SST simulations by the SOM. The impact of the modifications on simulated SSTs turned out to be more significant than the impacts of initial mixed-layer depth and the difference between diurnally-varying and daily mean short-wave radiation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据