4.1 Article

Changes in Guinea Pig Cochlear Hair Cells after Sound Conditioning and Noise Exposure

期刊

JOURNAL OF OCCUPATIONAL HEALTH
卷 50, 期 5, 页码 373-379

出版社

WILEY
DOI: 10.1539/joh.L8032

关键词

Sound conditioning; Cochlear hair cell; Noise-induced hearing loss

向作者/读者索取更多资源

Sound conditioning has reduced noise-induced hearing loss in experimental mammalian animals and in clinical observation. Forty guinea pigs were grouped as: A, control; B, conditioning noise exposure group; C, high level noise exposure group; and D, conditioning noise exposure followed by a high level noise exposure group. Auditory brainstem response thresholds were measured. The cochlear sensory epithelia surface was observed microscopically. Calmodulin, F-actin and heat shock protein 70 (HSP70) in hair cells were immunohistochemistrically stained. The intracellular free calcium was stained for confocal microscopy. The ABR threshold shift after noise exposure was higher in group C than D, and showed a quicker and better recovery in group D than C. Stereocilia loss and the disarrangement of outer hair cells were observed, with the greatest changes seen in group C, followed by groups D and B. The most intensive immunohistochemical intracellular expressions of calmodulin, F-actin, and HSP70 were found in group D, followed by groups C, B and A. The highest intensity of the fluorescent intracellular free Ca2+ staining in the isolated outer hair cells was observed in group C. The ABR and morphological studies confirmed the protective effect from noise trauma of sound conditioning. The protective mechanism of hair cells during sound conditioning was enforced through the increase of cellular cytoskeleton proteins and through the relieving of intracellular calcium overloading caused by the traumatic noise.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.1
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据