4.6 Article

The electronic structures of group-V-group-IV hetero-bilayer structures: a first-principles study

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 17, 期 41, 页码 27769-27776

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cp04815j

关键词

-

资金

  1. National Natural Science Foundation of China [11474081]
  2. Zhejiang Provincial Natural Science Foundation of China [LY15A040008]

向作者/读者索取更多资源

Recent findings of group-V nanosheets provide new building units for van der Waals hetero-nanostructures. Based on first-principles calculation, we investigate the structural and electronic properties of bilayer hetero-sheets composed of group-V (arsenene/antimonene) and group-IV (graphene/silicene) layers. These hetero-sheets exhibit typical van der Waals features with small binding energies and soft interlayer elastic constants. In the hetero-sheets, the Dirac characteristics of the group-IV layer and the semiconducting feature of the group-V one are well preserved, which causes a Schottky contact at the metal-semiconductor interface. The Schottky barriers are always p-type in the Si-based hetero-sheets, whereas in the C-based ones, the interfacial feature is sensitive to the interlayer distance. A tensile strain would induce a p-type-to-n-type Schottky barrier transition for the As-C hetero-sheet, while a compressive strain can cause a Schottky-to-ohmic contact transition in the Sb-C one. Moreover, due to the inhomogeneous charge redistribution, a sizeable band gap is opened at the Dirac point of the Sb-Si hetero-sheet, which could be linearly modulated by perpendicular strains around the equilibrium site. The versatile electronic structures and tunable interfacial properties enable the group-V-group-IV hetero-bilayer structures to have many potential applications in nano-devices and nano-electronics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据